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by the Electrical Engineering Department under the auspices of the
Engineering Experiment Station of Auburn University. This technical
report is submitted toward fulfillment of the requirements prescribed
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I. INTRODUCTION

Previous investigators have studied the interactions of thin cylin-
ders in free space [1], and thin cylinders over perfectly conducting
ground [2] with an electromagnetic step plane wave. This study will
present in an approximate manner the interaction of a thin cylinder over
a finitely conducting ground with an electromagnetic step plane wave.
Analysis will be conducted using the Singularity Expansion Method (SEM).

Current induced by the incident field on the cylinder surface is
approximated by an axially directed filamentary current on the cylinder
axis. Boundary conditions are applied only to the axial component of the
incident electromagnetic field on the wire axis. The above "thin-wire"
assumptions are valid provided the length of the cylinder is much greater
than its radius, and the cylinder is many radii away from the ground
plane [3].

The scattered field reflected from the ground plane is scaled by the
complex Fresnel reflection coefficient for the appropriate angle of inci-
dence and polarization involved. Since the Fresnel reflection coefficient
is strictly valid only for plane wave incidence, the scattered field must
approximate a plane wave at the free space-lossy ground interface. In a
study by Sarkar and Strait [4] it was shown that the above method, termed
"reflection method" gave results in the real frequency domain within 10%
of the exact Sommerfeld formulation for a horizontal electric dipole as
long as the dipole was at least (O.ZSA//ZE) from the ground plane. Speed

of computatio~ is an inherent advantage when using the reflection method
1




II. THEORY

Integro-Differential Equation

The system defined by Figure 1 is composed of a thin cylinder over
an imperfectly conducting ground plane and the incident electromagnetic
radiation. As shown, the cylinder is of length £, radius a, and height 1
above the ground plane. The imperfectly conducting nonmagnetic, u = Ho®

ground plane is characterized by its conductivity o, and permittivity,

€ = egeye The incident plane wave is vertically polarized and propagates
at an angle 6 with respect to the normal.
Currents will be induced on the cylinder by the incident field and
by reflection of the incident field from the ground plane. These induced
urrents will reradiate in the presence of the imperfectly conducting
ound producing a primary and secondary scattered field. Primary scat-
tered radiation is that part of the current induced field which propa-
gates directly from the scatterer surface to observation point. Secondary
scattered radiation reflects from the ground plane before reaching the o>-
servation point, and therefore must be scaled by the complex Fresnel re-
flection coefficient for the appropriate angle of incidence and polariza-
tion involved. The total scattered field consist of the sum of the pri-
mary and scaled secondary parts.
The primary scattered electric field is related to the currents that
produced it through a magnetic vector potential and appropriate differen-

tial operators. This relation may be written as

2
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where

4

!

-posip +7(7 - Kp)/seo (2.1)

primary scattered electric field

(2.2)
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"
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= |
O\
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»
S
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-~
; [
-
b <>
Q.
w

primary magnetic vector potential
K(r',s) = surface current density

Aa ~
=l —F
ax 0

9 ~ 3
— —
X u 3z vector operator

y oy z

r'=0_x"+U y'+u_ z' = source vector

|71 [P = direct distance from source point to
observation point

s = o+ jw = complex frequency variable

= s/c, ¢ = speed of light in free space.

<
\

Use of the complex frequency variable s in the above equations implies

that the Maxwell equations have been Laplace transformed.

Secondary scattered electric radiation may aiso be written in terms

of a magnetic vector potential as

E

-uosT\S + v(v - —AS)/se0 (2.3)

= secondary scattered electric field




where

xS _ 1 Vi ISR e '
A = '4_/ K(r',s) —— ds (2.4)
0

secondary magnetic vector po:iential

= distance from source point to
ground plane to observation point.

A11 other terms in (2.3) and (2.4) have been previously defined.

With surface currents on the cylinder approximated by a z-directed

filamentary current on the cylinder axis, the primary and secondary mag-

netic vector potentials of (2.2) and (2.4) reduce to

; £ ~y[r-r [P
A= F ol s) e i (2.5)
z 4r / ‘lr_r.llp
£ -y[r-r' |®
K= 12— : (2.6)
5 je=r|

Locate the observation point on the cylinde- surface, then

and

Jr=r (P = ry = [(z-2')? + a7 (2.7)

7% = ry = [(z-2')? + (2n+a)?]" . (2.8)

n

An expression for the primary scattered electric field in terms of the

unknown induced currents may be formed by substituting (2.5) into (2.1),

the result is

p 1 32 1 F %,
- 1 e 1
EZ (z,s) = (‘UOS"‘-S—E—O' —3;2-) ;= I{z",s) Y‘] dz'. (2.9)
0




A similar expression for secondary scattered electric radiation may be

formed by substituting (2.2) into (2.3) with the result

2 -yr
ES {2,8) = [y 5t —— ca YL F 1tz <5 8 ;i dz' (2.10)
b 2 o sao az? 4r 2 rz : ;

0

As stated, the total scattered field consists of the sum of the primary

and scaled secondary parts, that is

toc(z s) = Eg(z,s) - RwES(z,s)
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The complex Fresnel reflection coefficient for vertical polarization,
e. (Rﬁ) is used in (2.11) to scale the z-directed secondary electric
field, and is defined as
(egtX) siny - [(eR+X) - cos?q;]l/2

v
RY - : — (2.12)
(eR+X) siny + [(eR+X) - cos‘y]

where X = 120mo/y, vy = s/c.

This expression utilizes Jordon's [5] definition of the plane wave
reflection coefficient for vertical polarization. As pointed out by a
previous investigator [6], the minus sign "n (2.11) comes from Jordon's
assumed positive directions of electric fields for the incident and reflec-

ted waves [5]. Note that y in (2.12) is the angle formed by the




secondary scattered incident ray and the ground plane. It is a function
of source and field point position as depicted by Figure 2-1.

In Figur: 2-2 is shown the vertically polarized total incident and
transmitted electromagnetic excitation. At the free-space lossy ground
interface the tangential components of the total incident field must
equal the tangential components of the transmitted field. This condition
is equivalent to requiring normal wave impedances to be continuous at the

interface [7], thus

t
R L E
2V = 2o gt Zap x=on (2.13)
X 4l X Ht
Yy y

where

i - : : ;
Z = x-directed wave impedance in free space region

2 -y(-x sing.+z coss.)
A E;(s) sinei [e . 1

b e-y(x sing; + 2 cosei)] (2.14)

= total z-directed incident electric field

i -y (-x sin6 +z c0s6.)
H = Eo(s)/”l [e L

-y(x sinei + 2 cosei)

SRS (2.15)

= total y-directed incident magnetic field

Zi = x-directed wave impedance in lossy region

o a————

— —

"4 ——




~ ——

‘uoL3e3Loxs dt3aubewouldaa 1
P933Lwsued} pue juspLoul 303 pazide(od A[[eILIU3A °2-Z 34nby4 |
'
3 :
32 \ |
7, W~
9
y- = X \ &
Amu ‘0 3ue|d punouy) A X ko
! '
L 9
x
3
L y
]
.
x e




9

-y, (-x sine, +z cos6, )
EE = EX(s) sino, e 2 t t (2.16)
= z-directed transmitted electric field
-y, (-x sin6, *+z cose,)
H; = Eg(s)/nz e 2 £ L (2.17)

y-directed transmitted magnetic field

Ny = intrinsic impedance of free space

ny = intrinsic impedance of conducting earth

Yp 7 complex propagation number of conducting earth

and T is the reflection coefficient to be determined. Note that the total
incident field consists of the direct electromagnetic excitation plus its
reflection from the ground plane. The prircipal of direction cosines has
been used in the development of (2.14) thrcugh (2.17). Substituting the
field expressions into (2.13), and simplifying the result, gives

e e-y2hs1nei m sino; - n, siné,

o STHE, ¥ T, Sinb, (2.18)
Through the application of Snell's law of refraction (2.18) may be written

-y2hsino (egX) sino - [(eR»ex).cosze]Lz

r = e IR
(eR+X) sino + [(eRFX)-cos 8]

-y2hsing 0
= e Rv R -

;
A
5
1
B
.
i
|
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Equation (2.19) differs from (2.12) only by the exponential factor and
angular dependence of Rv‘ The total z-directed incident electric field
may now be obtained by substituting (2.19) into (2.14) with the result

-y(-x sine+z cose)

i i . 0
EZ = Eo(s) sino [e - R

v
-y(2h sine+x sine+z cose)
e 1 . (2.20)
To insure uniqueness the total z-directed scattered electric field
must cancel the total z-directed incident electric field on the cylinder

axis, therefore

E"J= : EtOt(z,s)J . (2.21)

Evaluating th2 z-directed scattered and incident fields on the cylinder
axis rather tnan on the surface is an appropriate thin wire assumption.
Using (2.11) and (2.20) in (2.21) and applying the above discussed thin

wire assumption, (2.21) becomes

; -yZ €0SH " -y(z cose+2hsing)

E_(5) sino [e -R e
0 v
= ( s-‘—"z)‘—z R SR

o> se. .2/ 4 2634 TR =

0 3z 1
0
£ -yr

- RY( s-—]——az)’— I(z',s) & o (2.22)

v'o® se. .2' &rn ' r : ;

0 3z 5 2
Define
--Yr‘1
p e N .
F(z,2',s) = = = primary Green's function (2.23)
1
B i i —— B S




N

-Yr‘z
FS(z,2',s) = er = secondary Green's function (2.24)
2
where
1
ry = [(z2)? + %)%
rp = [(z-2')? + (2hva)?]*
and since
2 2
1 1 3 ) 2
5—(-4me s) (u_s - ) = ( -Y°) . (2.25)
4y 0 0 se, 322 3.7.2

the integro-differential equation to be solved for the unknown induced

currents is

-YZ c0s6 ” -y(z cose+2h sine)

i .

(-4neos) Eo(s) sino [e - Rv e
2 £

= a 2 ] S ' '

= = =) I(z',s) F°(z,2',s) dz

0z o

4
2
= Rt (3—7 - Yz) ~}(. 1(z',s) R%(z,2',s) dz' (2.26)
9z
0

Application of the Method of Moments

The purpose of this section is to reduce the integro-differential
equation, (2.26), to a form suitable for numerical solution. The tech-
nique by which this may be accomplished is known as the method of mo-
ments [8].

Generally, the method of moments may be used to solve an inhomoge-

neous equaticn

L(f) =g (2.27)

o ——— A — . $

.
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where L is a linear operator, g is known, and f is to be determined. The

unknown f is expanded in a series of functions as

f= anfn (2.28)
n

where the fn are called basis functions and the o are constants. Using

the linearity of L and (2.28), (2.27) may be written

D e L(F) = g : (2.29)

n

Next a set of testing functions is defined, Wis Wos W ., and the inner

3 -
product of (2.29) with each W formed, yieiding

Z"‘n<wm’ L(f )> = <w 9> . (2.30)

n

n=l, 2, 3y s

W= by ds 3y oo
Equation (2.30) is a matrix equation which may be solved using standard
numerical techniques.

For the problem at hand, a geometric interpretation of the method

of moments may be forwarded. Let the thin wire be broken into segments,

with the induced current on each segment assumed to be constant. See Fig-

ure 2-3. This is equivalent to expanding “he current in a set of pulse

functions as

I(z',s) =Z a (s) 1 (z") (2.31)

n

-m—— ——h—
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z, = (m-1)a (Match Points) m=1, 2, ... N
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A = 2/(N-1) Length of Zones :
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Figure 2-3. Moment Method Partitioning of Geometry
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where

an(S) = unknown coefficient of constant current

th subsection.

1 for 2" < z < znﬂ
and In(z') = (2.32)
0 elsewhere n = 2, 3, ... N-1 .

in the n

At wire ends the boundary condition of zero current may be satisfied by

defining
I(o) = 1(2) =0 . (2.33)

Actually, this condition is automatically met by allowing the two end
subsections to extend past the end of the scatterer. Using a pulse
function expansion of the unknown induced current allows the integration

in (2.26) to be approximated by a sum of integrations over N segments.

Thus,
; ' -YZ 0S8 " -y(z cose+2h sing)
(-41505) Eo(s) sino [e - R, e 1
Zn+1
32 £y P
=Z a (s) A - %) FP(z,2',5) dz* (2.34)
5 A 3z
Z P
Zn+1 y
- R&Zan(s) / (a—-z- - y2) FS(z,2',s) dz'
- 8 3z
z
where

>

= £/(N-1) = length of a zone (2.35)

S




— T .-

15
N = number of subsections or zones

Mz (n-3/2)a n=1,2,...N1

~N
]

i

subsection ends.

A set of testing functions may now be defined as

1 z=zm
e(z—zm) = (2.36)
0 z#zm
where 2y " (m-1)A m=1,2, ... N ; {2.37)

Now by forming the inner product of (2.34) with each of the delta func-
tions of (2.3€), and approximating the differentiation in (2.34) by

finite differences, that is

oF
S w 5 [F(z+az) - 2F(z) + F(z-az)] (2.38)
dz (az)

the integro-differential equation becomes

-YZ, COSB 8 -y(zm cose+2h sins)

(-4nsos) E;(s) sino [e - Rv e ]

+
y 1

n
Zz

n+l

z
P ' 11 _ p¥ s ;
o 2 (zm_],z ,s) dz'] R, [/ F (zmﬂ.z sS)
n
z

-(y2a%+2) Fs(zm.Z',s) + Fs(zm-],z',s) dz' ]}

n=2,3, ... N-1

m=2, 3, ... N-1. (2.39)

DIERO 1—2 {[/ FP(24y02'55) = (v2a242)FP (2,2 15)
n
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Equation (2.39) is a set of linear algebraic equations, and may be

placed in the form of a matrix equation,
V(s) = Z(s) T(s), (2.40)

where a single bar represents a column matrix or vector and double bars

indicate a square matrix. Define the matrices as

V(s) = the source vector = v 1,

where
v, = the matrix elements of V(s)
; -YZ,, Cos® . -y(zm cos8+2h sing)
= (-4neos) Eo(s) sing [e - RV e
(2.41)
m=2, 3, N-1
T(s) = the response vector = [in]
where
i, = the matrix elements of T(s)
= aps unknown coefficients of constant
current in the th zone (2.42)
n=2, 3, ... N-1;
Z(s) = the impedance matrix = [zmn],
where 2 ® the matrix elements of f(s)

Siew wis



17
zn+1

L {[/ PP (2pe102'55) - (2a242) WPz 2¢,5)
n

Z
mn A

s - e

Zn+1
P : T s :
+ F (zm_],z +3) d2*) R, F}f F (zm+],z 25)
n
z

-...
L}

(v2aZ%42) Fo(z ,2',s) + Folz 102%.5) d2*D)

n=E2 3 oo BT
(2.43)
m=Z, 3, i B

s

The unwieldy appearance of (2.43) may be improved by defining two

funciions n+l

z
p - p 1 ]
Hm’n(zm,s) jc F (zm,z ,S) dz (2.44)
2
Zn+]
S o2 S 1 '
Hm,n(zm’s) -_/£ F (zm,z 35S ) dz (2.45)
z

-Y(z,-2")% + a27"

ith FP(z ,z',s) = & - 2.
wi (zm z',s) [(zm-z')2 " az]ﬁ (2.46)
-Yl(z,-2')% + (2n+2)?7"
Fiz ,2".5) = & (2.47)

[(zm—z')2 + (2h+a)2]l/2

Now (2.43) may be redefined as

1 p
mn Z?' {Hm,n(zm+]’s) o

2

2 p
Z A +2)Hm’n(zmas)

+

p ¥ ryS 2.2 S
Hm’n(zm_]as) = RV [Hm’n(zm+]ss) = ('Y A +2)Hm’n(zmas)

. N-1

S 35 v
Is wee N1

n
Hoon(Znap28) 13

(2.48)

2,
2,

R
> r
- -

hissae = <.
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Alternate Formulation for the Secondary Scattered Electric Field

As pointed out by Shumpert [9], an alternate formulation for the
secondary scattered electric field is derivable by using the exact
expression for the electric field produced by a constant current element.

Using (2.11) in (2.21) gives
JEl = P - RVES
EZ Ez(z,s) Rsz(Z’S) (2.49)

where Eg(z,s) and R&Ez(z,s) are the primary and scaled secondary scatterad
electric fields on the cylinder surface respectively, due to the unknown
induced current. Since the wire scatterer has been segmented as shown

in Figure 2-3, and the current induced on each segment assumed constant,
it follows that the secondary scattered electric field will be merely

the sum of the fields caused by each individual constant current element.
The exact electric field due to a constant current element has been given
by Harrington [7]. Applying the principles discussed above, and using
Harrington's expression for a constant current element, the secondary

scattered electric field may be written

N-1

Z A S -yr
s o at z : e 1 .1 2
Ez(z,s) T T on %n © [( +—3) cos “mn
n=2 "mn Y'mn
T T S R, SR (2.50)
2 on r2 r3 mn
mn mn
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where
. Lo
' (uo/eo) = 120n
A= 2/(N-1)

roo = ((20)% + [a(m-n)1%)

cosy . = (m-n)A/rmn
sinwmn = 2h/rmn
m=2, 3, ... N-1
n=2, 3, ... N-1
From (2.9) we have
7 N-1
Pro A 0 P
Ez(Z »s) = 4 2 %n [Hm,n<zm+1’s)
TYA

3
"
N

2.2 p p
- (y"a%+2) Hm’n(zm,S) + Hm,n(zm_l,S)]

me=2, 8, ... B . lzsy

Using these expressions for the scattered fields in (2.49) the matrix
elements of (2.48) may be redefined as

2.2

m,n

1 P p
AZ [Hm +2) Hm,n(zn’s)

_'Yr‘
p _o? mn 1 1 2
+ Hm,n(zn-l’s)] RVZAy e [(—?— + ——3—) cos -

"mn Y'mn
Bigeis 1 . 2
+ z(rmn + r2 + r3 ) sin “mn] (2.52)
mn mn

m=2, 3, ... N-1

n=2,3 ... N-1

)
.
.

.

3

)




20

The obvious utility of the alternate expression for 0 is that an inte-
gration has been replaced by an algebraic expression, and thus numerical

evaluation tine reduced.

Application of the Singularity Expansion Method

The Singularity Expansion Method (SEM) formalized by Baum [10-11],
and applied by many others, allows one to treat a distributed system,
such as the one at hand, in a manner similar to that used in classical
circuit theory. In circuit theory the time domain response of a Tinear
circuit excited by an arbitrary waveform may be determined by knowledge
of the location of any singularities of the response function as well as
the corresponding residues [1]. In the case of a distributed system
there are an infinite number of singularities, and associated with each
is a natural modal current distribution. For any arbitrary excitation,
i.e., incident electromagnetic radiation, one need only determine how
much of each natural modal current has been excited [12]. This is deter-
mined by the coupling coefficient associated with the given singularity.

The solution of (2.40) is

T(s) = Z-V(s) V(s) = Y(s) V(s) (2.53)

Y(s)

the inverse of the system

impedance matrix

[y 1]

mn

where

= the matrix elements of Y(s).

LB
e




21

Elements of the inverse matrix may be written

L G
Ymn © Alsgm (2.54)

where Anm(s) is a minor determinant of Z(s) formed by deleting the nth

row and the mth column, and A(s) is the determinant of Z(s). Examination
of (2.54) indicates that the poles of the response function I(s), are
the zeros of A(s). The poles have been termed the system natural reso-
nant frequencies. Now writing the unknown current in a partial fraction

expansion, one obtains

=r
i Y,
T(s) = Y(s) ¥(s) = E Ty s . Hess)
s 1
1

th

In (2.55) S5 is the i~ natural resonant frequency and 7? the correspond-

ing residue, defined as

Y= Vim o [(s-s;) Y(s)] : (2.56)

>S .
SS_|

Using the circuit theory analogy, certain information about the system
natural resonant frequencies may be inferred. First, the r ances
must occur in the left-hand portion of the complex plane to nsure a
decaying response. The poles must occur in conjugate pairs to produce a
real time domain current, and since the scatterer has a finite quality
factor, no poles may reside on the jw axis. Furthermore, it is assumed,
but without proof, that the poles are all simple [1]. This has been
found‘to be the case in many exactly solvable geometries.

The system residue matrix at the pole $=S > 72, has been shown to
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b

(4]

of two n dimensional vectors

V=g, (2.57)
where

G; = natural mode vector

fﬁ = transpose of coupling vector
and

B, = proportionality constant.

The natural mode vector is a solution to the equation

T(sa) v =0 (2.58)

a

and the coupling vector satisfies the equation

=t T -

74 (sa) Ca =0 (2.59)
where

=t I =

Z (sa) = transpose of Z(sa) -
In this problem the system impedance matrix is symmetric, that is

=t -=

Z (sa) = Z(sa) (2.60)
so the natural mode vector and the coupling vector are identical,

P 3 (2.61)

a a

and therefore, (2.57) may be written

t

__T —
) W BV (2.62)

o

a dyadic [13], [14]; that is, it is proportional to the outer product
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where
5% = transpose of v
a a

Let the natural mode vector be normalized such that its maximum element

is real and equal to unity,

Y
o

3; normalized . (2.63)
0

Now the residue matrix becomes

ST — =t
Y =Bv v (2.64)
a SICCR

Note that the proportionality constant Ba is not the same as in (2.62),

but no confusion should result since it has not yet been defined.
Several methods are available for calculating the proportionality

constant By The method presented here is simple and requires a minimum

of computation time. From (2.64) it is evident that

r
(ya)if = By {(va)i}o {(vu)i}o

2
8, {(va)i}0 (2.65)

where

r
a)ii

an element from the ith row and ith

(y

column of the system residue matrix
evaluated at the singularity Sy
{(“a)i} = an element from the ith row of the
natural mode vector corresponding to

the singularity Sy

T Pe— E i S i et <. TN = K
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and therefore,

E (y )ii
a {(Va)i}o

B (2.66)

The ijth element of the system residue matrix at the pole s, may be

found using (2.54) and (2.56)

(y:)ij = _1,-1:2 (S-sa)(‘ya)'ij
o (s=s =1 (s)
= ll‘: A(S) (2.67)

so that finally,

(-, )(-1)‘*j 8405,
g = lim = + (2.68)

T e L £ a(s)

Expressing the residue matrix as in (2.64) allows one to write the re-

sponse vector of (2.55) in the form

i) = Z BV Ca (2’) (2.69)

(!

or equivalently as
ct V(s
I(s) = E B \) ?l)' (2.70)

since by (2.61)

v = E; = normalized coupling vactor

e «.. ——— e

i ———
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In (2.70) the scalar product of the normalized coupling vector CZ , and
0

the incident field vector V(s) occurs, mu! iplied by the pronortionality

constant Ba. This quantity has been defined by Baum [14], as the cou-

pling coefficient € at the singularity $=S s SO

(2.71)

As stated, the coupling coefficient determines how much of each natural

modal current distribution, (i.e. natural rmode vector) will be used 1in

calculating the respeonse vector I(s).

angle 6, grouad parameters, (conductivity
the particular singularity at which it is

vector may now be written in terms of the

cv

ik ¥ s
o

calculated.

coupling coefficient as

1s a function of the incident

The response

(2.72)

Consideration of (2.72) will show that the complex natural frequencies,

o, and permittivity, eReo) and

and natural mode vectors are not a function of the angle of incidence of

the electromajnetic excitation, only the coupling coefficient.

Therefore,

once these quantities have been determined for a particular geometry the

response function for any incident field is easily found.

Time domain currents may be found by using the Laplace inversion

formula, thus

tv €
e ——1- (X(Xo d
T o g eET
b

where Cb is the Bromwich contour.

(2.73)
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Approximations and Limitations Imposed

The validity of any analysis is a function of the approximations
used in its construction. This section will discuss the limitations
imposed by the approximations used in this analysis.

The assumptions and approximations are as follows:

a) Current is assumed to flow only in the direction of the wire

axis.

b) Boundary conditions are applied only to the axial component of

the electromagnetic field.

c) The surface current density is approximated by a filament of

current on the wire axis.

d) End caps on the cylinder are ignored.

e) The moment method is an approximate numerical solution.

f) The reflection method is an approximate technique.

For a finite length cylinder the axially directed incident field
excites both an axially and circumferentially directly current [15-18].
However, the axial component of the current is much more significant than
the circumferential component provided the length of the cylinder is much
greater than its radius. Therefore, the first two approximations are
valid for thin cylinders. Replacing the surface currents with filamentary
currents on the wire axis is valid provided the circumferential variation
of the surface currents is uniform [3]. This will be the case if the
cylinder is thin and located many radii away from the ground plane. The
scattered field contributed by currents induced on the ends of the cylin-

der will be regligible provided the cross-sectional area of the cylinder

r—
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is small, a<<i. In applying the moment method, the number of zones into
which the scatterer is divided must be increased as the frequency of
analysis incr:ases. For an acceptable solttion, ten zones per half wave-
length may be used. Thus, one may conclude that this analysis is not
applicable for high frequencies.

The term "ground wave" applies to energy propagated over paths near
the earth's surface [5]. It is convenient to divide the ground wave
into a "space wave" and "surface wave". The space wave is made up of
direct and ground-reflected energy. The surface wave is that energy
which is quidad along the earth's surface, in much the same manner as an
electromagnetic wave is guided by a transmission line.

Sommerfeld [19], was the first to trezt radiation from a vertical
dipole over a finitely conducting earth. In this original discussion,
Sommerfeld stated that it was possible to divide the ground wave strength
into two parts, a space wave and a surface wave. Norton [20], later
expressed the fields for an electric dipole above a finitely conducting
earth in a form which clearly showed this separation into space and sur-
face waves. As pointed out by Jordon [5], when the dipole is located far
from the earth the space wave becomes the total ground wave. But as the
dipole nears the earth additional terms must be taken into account in
order to form the total reflected field. These terms are the ones which
account for the surface wave.

A comparative numerical study of several methods for analyzing a
vertical thin wire antenna over a finitely conducting ground plane was

done in a dissertation by Jerry McCannon [21]. In this work 'he
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reflection method was found to give answers within 1 to 2 percent of the
exact solution when the height of the dipole was greater than 3/8 2.

As stateda in the introduction, it was found that the reflection
method for the horizontal dipole produced results within 10% of the exact

Sommerfeld formulation if
h > (0.25//EE)A (2.73)
where

h = height of the dipole above ground
€ = relative permittivity of ground

x = free space wavelength.

For an average relative permittivity of 15 the dipole must be located
at a height greater than h = .065Ax.

In short, the reflection method used in this analysis gives good
results provided the scatterer is not brought into close proximity of the

ground plane.

[




III. Numerical Results

A computar code has been written to determine specific SEM para-
meters (i.e., the system resonances and corresponding natural modal
current distributions). These parameters are a function of scatterer
height-to-length ratio, length-to-radius ratio, ground conductivity and
relative permittivity.

Before presenting the results of this work, a brief review of two
other closely related problems is in order.

Tesche [1] treated the case of a cylindrical scatterer in free
space. The exterior natural resonances of this problem occur in layers
in the complex plane and may be described by Yi.n where "£" denotes the
layer of the nole and "n" the pole within the layer. These free space
resonances arz repeated in Figure 3-1. Singularities located with an
"x" have natural modal current distributions which are even functions
about the scatterer midpoint; those located with a dot have odd modal
distributions. Note that the imaginary part, wl/c, of the singularities
in the first layer occurs at approximately an integer multiple of =, or
at a point whare the length of the cylinder is resonant (i.e., £=n)/2).
First layer rasonances are of greatest importance in calculating induced
currents since their position in the complex plane is nearest the imagi-
nary axis. In the free space problem pole locations are a function only
of cylinder length-to-radius ratio. As the radius of the structure is

increased, the poles move away from the imaginary axis indicating that

29
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more damping is introduced. A commonly used shape parameter is defined

by
Q= 2In (£/a) (3.1)

A11 the figures in this work are for a shape parameter of 10.6 (£/a=200).
The problem of a thin cylinder over a perfectly conducting ground
plane has been treated by Shumpert [9]. Singularities in this problem
are a function of scatterer height-to-length ratio as well as length-to-
radius ratio. When the cylinder is half its length above the perfectly
conducting ground plane, the poles will be oriented as shown in Figure 3-2.
Comparison of this figure with Figure 3-1 indicates that the critical
resonances, those along the imaginary axis, are only slightly displaced

from their free space counterpart. Figure 3-3 displays the movement

of singularity Y17 38 the scatterer recedes from the ground plane. As
shown, this pole spirals about the free space location until a pole from
another layer takes its place. That is, the original pole, Y11 leaves
the spiral path and begins to approach the origin while the new pole
takes ub the spiral trajectory left by the original pole. This pole
makes only a partial revolution about the free space location before it,
too, is repleced by a new pole. It is interesting to note that each of
these singulerities have similar modal current distributions. First
layer singulerities are associated with the length of the scatterer, as
in the free space case. Singularities in the other layers have been
associated with scatterer-ground plane interactions.

Let us now consider the problem of a thin cylinder over a finitely

Po————— e~
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conducting ground plane. Figure 3-4 shows the movement of singularity
m in the complex plane as several system parameters are varied. The
outer dashed spiral through the points lab:led "A" is the trajectory

of pole Yqq @S the scatterer is brought near the ground plane; the con-
ductivity is held constant at o = 1.2 x 102 along this curve. A
conductivity of this value corresponds to a very good earth, that is,
the ground plane may be considered perfectly conducting. Therefore,
this spiral is seen to be identical with the trajectory of M presented
in Figure 3-3. For each value of h/£, the conductivity is varied from

o= 1.2 x 102, point "A" on the dashed curve, to o = 1.2 x 1074

, point
"G", intermediate values are shown at points "B" through "F". The value
o=1.2 x 10'3 and 0 = 1.2 X 10'2 at points "E" and "F" respectively
correspond to typical values of conductivity for normal terrain. Let
the paths traversed by the pole for a given value of h/f be called

the inner spirals. It is seen that each inner spiral, corresponding

to a given value of h/£, converges to point "G" as the conductivity of
the ground is reduced, this result is to be expected since "G" is the
location of M for free space conditions. When the pole is displaced
from position "G" along one of the inner spirals more energy is being
reflected from the ground plane. - As ¢ becomes very large, points "A",
all the incident energy is reflected, and the problem becomes that of a
cylindrical scatterer over a perfectly conducting ground plane. Figure
3-5 is also a plot of Y17 as the value of h/£ and o vary, the relative
permittivity is held at five. Unlike Figure 3-4, point "G" is not the

same in the limiting case of small o, but rather each inner spiral
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converges to some point along an inner dashed spiral. Although the
conductivity becomes small, the ground plane is still somewhat reflec-
tive since tre relative permittivity is held at five. Next consider
Figures 3-6 and 3-7 where the relative permittivity is held at fifteen
and one hundred, respectively. Again, as the conductivity is reduced,
the paths followed by the singularity for a given value of h/£ converges
to an inner spiral. The points along thes2 inner spirals are displaced
from the free space pole position in proportion to the relative permit-
tivity of the ground.

Some insight into the behavior of the system singularities may be
obtained by considering their origin. As stated, the singularities in
the complex plane are the zeros of the determinant of the system imped-
ance matrix. Therefore, as the impedance elements vary so will the
position of & given pole. The impedance elements for this problem may

be expressed as

Zor © Z;n i Rgz;n (3.2)
where
z;n = matrix elements of the free space problem
z;n = matrix elements due to image terms in the
perfect ground problem
and

o (eg#h) sing - [(ep#X) - cos?y1®

Ry

= T (3.3)
(eR+X) siny + ((eR+x) - cos y]?

i
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€R = relative permittivity of earth
X = 120mo/y, o = conductivity of earth.

From (3.2) it is apparent that when the reflection coefficient is very
small the impedance elements will be the elements of the free space
problem, and thus the singularity locations will be those of Figure 3-1.
This conditicn will be met when the relative permittivity of the earth
is unity and the term "X" in (3.3) is much less than one. When the
Fresnel reflection coefficient is near unity the impedance elements will
be those of the perfect ground case, and the singularity locations will
be those of Figure 3-2. This occurs when either the term "X" or the
relative permittivity of the earth is larga. Note that the size of the
term "X" is proportional to the conductivity of the earth and inversely
proportional to the frequency of the particular singularity under
consideration. Thus for higher order poles the ground conductivity
must be larger to produce a perfectly conducting earth than for lcwer
order poles. In short, displacement of a singularity from its free
space positicn is a function of the magnitude of discontinuity in the
ground plane whether it be produced by the conductivity or relative
permittivity.

Trajectories of first layer singularities Y12> Y13° Y140 and Yi5
are presented in Figures 3-8 through 3-15. As the system parameters vary,
these singularities behave similarly to the fundamental resonance dis-
cussed above.

Figures 3-16 through 3-26 were constructed in order to determine the

percent chance in the fundamental damping constant, (ReY]1)’ relative to

e
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the free space damping constant, (Reyo), and the percent chance in the
fundamental resonant frequency, (Imy]1), relative to the free space
resonant frequency, (Imyo). This data, talen from the trajectories of
Figures 3-4 through 3-11 is presented as a function of conductivity with
the relative rermittivity and height of the scatterer above the ground
plane as parameters. Note that although the percent change in damping
constant can te quite iarge, the resonant frequency changes no more than
+5%. This result supports the proposition that first layer resonances
are associated with the scatterer jtself not the scatterer-ground plane
interactions.

The real and imaginary part of the natural modal current distribu-
tions for rescnant frequencies Y110 Y120 Yi3° Y14 and Y5 are shown 1in
Figures 3-24 and 3-25. These distiributions are, of course, influenced
by ground characteristics and scatterer height-to-length ratio, but
numerical results show that these influences are relatively minor. One
should also obiserve that the imaginary part cf the mode vectors is at
least an order of magnitude less than the real part indicating that the
mode function is approximately a real function of position.

Coupling coefficients associated with singularities 1, Y120 and
Yq3 are shown in Figures 3-26 through 3-90. In each of these figures, the
coupling coefficient, normalized such that its maximum magnitude is equal
to unity, is plotted as function of the angle of incidence of the electro-
magnetic excitation, ie (the angle o shown in Figure 2-1). In addition,
the curves are presented with either scatterer height-to-length ratio, or

ground conductivity, or ground relative permittivity as a parameter.
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Figures 3-26 to 3-31 present coupling coefficients for fundamental
self-resonant singularity 4% at scatterer height-to-length ratios of
0.25, 0.50, 0.75, 1.0, 1.25, and 1.50 respectively. In each of these
figures, the relative permittivity, ep> is held at unity, while the
curves in a given figure correspond to ground conductivities of ¢=120.0,

0=0.12, and 0¢=0.00012. When ¢=0.00012 and ¢,=1.0, the coupling coef-

R
ficient remains the same regardless of the scatterer height-to-length
ratio; an expected result since the ground plane has vanished and “free
space" conditions prevail. For the "free space" case, the coupling
coefficient has its maximum value at broadside incidence, ie (8=90°),

a result which agrees with previous investigation [1]. One observes
that the coupling coefficient does not differ greatly from the "free
space" case, Figures 3-26 and 3-27, even when the ground conductivity

is high, 0=120.0, as long as the scatterer is within approximately 1/4
wavelength of the ground plane. In Figures 3-28 through 3-31, the
coupling coefficients for 0=0.12 and 120.0 begin to differ significant’ y
from the free space case. With a height-to-length ratio of 0.75 and
0=120.0, see Figure 3-28, maximum coupling occurs at 75°, and for a
height-to-length ratio of 1.00 and ¢=120.0, see Figure 3-29, maximum
coupling occurs at 45°. Now when ¢=120.0 and the scatterer height-to-
length ratio is 1.25 and 1.50 in Figures 3-30 and 3-31 respectively,

the coupling coefficient again maximizes at 8=90°.

One might logically ask, for a fixed scatterer geometry and ground

parameters, what angle of incidence will produce maximum coupling?
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First consider the simple case of a time harmonic plane wave obliquely
incident on a perfectly conducting half-space. If the normal to the
half-space is in the x-direction, and if the incident electric vector
is parallel to the plane of incidence, (vertical polarizaticn), then
the sum of the incident and reflected waves will produce a standing
wave in the x-direction whose electric vector is parallel to the
perfectly conducting ground plane. Defiring o as the angle formed by
the incident ray and the ground plane, the magnitude of this standing
wave will be proportional to sin[gx sina] sina, where g = g%, % the
free-space wavelength, and x is the perpendicular distance from the
ground plane. Now let us immerse a "thin-wire" in this standing wave
with its axis parallel to the electric field at a fixed number of
free-space wavelengths above the ground plane. What incident angle «
will produce a maximum standing wave at the position of the thin wire?
It will occur at the angle o that maximizes sin[8x sina] sina, which
occurs when either cosx=0 or tan[8x Sina] + 8x sina = 0.

Returning to the scatterer-ground plane problem with the above
discussion in mind, will afford some interesting results. Table 3-1
predicts the angle 6 that results in maximum coupling for a given
scatterer height when the ground plane is nearly perfectly conducting,
(0=120.0). For Figures 3-26 and 3-27 where the scatterer is 0.11 and
0.22 wavelengths above the ground plane, the table predicts maximum
coupling to occur at broadside incidence. From Figure 3-28, maximum
coupling occurs at 6=75°; for this case the table predicts a value

between 73.0° and 73.5°. The difference in the predicted value and

e —— R — =
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the value in the figure is probably due to numerical evaluation of the
coupling coefficient at 5° intervals. Using the standing wave analogy,
see Table I-1, one would expect the coupling coefficient to maximize
for 42.0°<6<42.5° in Figure 3-29. In the figure, the maximum occurs
at 45°. Figure 3-30 indicates peak coupling at 6=90°, a value which
is predicted by the table. Although the table also predicts a maximum
at approximately 33°, as can be seen from Fig re 3-30, there is a
relative extrema in the magnitude of the coupling coefficient at this
angle. Gererally, the discussion applicable to Figure 3-30 applies as
well to Figure 3-31.

Figures 3-32 and 3-33 display the angular variation in the real
and imaginzry part of the coupling coefficient for the fundamental
resonance with the scatterer height-to-length ratio as a parameter.
For these figures, the conductivity is large, 0=120.0, and the relative
permittivity is one, eR=1.0. Note that although the information
contained 1n these figures is redundant, (see Figures 3-26 through 3-31),
there inclusion provides ready visualization of the variation in coupling
coefficient with scatterer height-to-length ratio.

Figures 3-34 through 3-42 show variation in the coupling coefficient
for M with the relative permittivity as a parameter.

In Figures 3-34, 3-35 and 3-36, the scatterer height-to-length ratio
is held at 0.25, while the conductivity s is respectively 120.0, 0.12.
and 0.00012. 1In each of these figures, the coupling coefficient, (reel

and imaginary part), is plotted for a ground relative permittivity, €
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of 1.0, 15.0, and 100.0. As can be seen from Figure 3-34, when the
ground conductivity is large, ¢=120.0, there is no variation in the
coupling ccefficient as the ground permittivity is varied. This
result can be explained as follows. As previously discussed, the
singularity location relative to its free space position is a function
of the discontinuity at the free space-Tossy ground plane interface.
Although the ground relative permittivity for conditions depicted in
Figure 3-34 varies greatly, the conductivity remains large, producing
a large discontinuity in the ground plane. Thus, the position of M
in the complex plane will be constant. Since the coupling coefficient
is strongly dependant on singularity location, (see Equation 2.71), it
too will be constant. In Figure 3-35, the conductivity o is 0.12.
Since this is still a relatively large value of conductivity only a
slight var-ation in the coupling coefficient is produced by varying
the relative permittivity. In Figure 3-36, the greatest variation in
the coupling coefficient with relative permittivity is observed. The
conductivity for this case is essentially zero and, therefore, the
discontinuity in the lossy ground-free space interface is controlled
by the relative permittivity.

Figures 3-37 through 3-39 and Figures 3-40 through 3-42 contain
plots of the variation in coupling coefficient with relative permit-
tivity for scatterer height-to-length ratios of 0.75 and 1.25 respec-
tively. The interpretation of these figures is similar to that given

for Figures 3-34 through 3-36.

.

- > e




39

The coupling coefficients associated with the secand self-resonant
singularity, Yp» are shown in Figures 3-43 through 3-66.

The coupling coefficients corresponding to the second self-resonait
singularity locations "A", "D", "G" of Figure 3-8 are shown in Figures
3-43 to 3-47. Table 3-2 predicts possible angles of maximum coupling
for these figures using the "standing wave analogy". From the first
row in the table, it is seen that there is no angle 6 between 0 and 90
degrees that satisfies the equation TAN[ghSINs] + g8hSINs=0. The reason
for this is that 0 < ghSINe < 1.38 for 0° < & <90° and thus TAN[3hSINs]
will be positive. However, as always, a relative extrema is predicted
at 0=90°, an expected result considering the fact that all the coupling
coefficients are even functions about 6=20°. That is, one would expect
the same amount of coupling at say 6=95° as at 6=85°. From Figures
3-44 and 3-45 maximum coupling occurs at 50 and 35 degrees respectively,
values that are predicted reasonably well by Table 3-2. Using the
“standing wave analogy" one would expect peak coupling to occur for an
incident angle of approximately 22 or 67 degrees for the coupling
coefficient in Figure 3-46. From the figure peak coupling occurs at
65°, with a relative extrema in the magnitude of the coupling coefficiant
occuring at approximately 22 degrees. Results from the last row of tha2
table agree reasonably well with the corresponding figure.

Variations in the real and imaginary part of the coupling coefficient
for the second self-resonant singularity, Yips @S @ function of spacing,
h/%, are shown in Figures 3-48 through 3-51. 1In each of these fiqures,

the relative permittivity is one. The conductivity in Figures 3-48 and
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3-49 is large, 0=120.0, while for Figures 3-50 and 3-51 the conductivity
is 0.12.

Figures 3-52 through 3-66 are plots of the coupling coefficients
for singularity Y12 with the relative permittivity of the ground plane
as a parameter. Coupling coefficients in these figures are for

singularity positions "A", "D", and "G" in Figure 3-8, and positions

"A", "D", and "F" in Figure 3-9. As before, when the ground conductivity

is large, the coupling coefficient is insensitive to changes in the
relative permittivity (see Figures 3-52, 3-55, 3-58, 3-61, and 3-64).
The largest variation in the coupling coefficient with relative permit-
tivity is noticed in Figure 3-54, 3-57, 3-60, 3-63, and 3-66, a result
indicative of the large difference in position of points "G" and "F" in
Figures 3-8 and 3-9.

In Figures 3-67 through 3-90 are presented the coupling coefficient
for the third self-resonant singularity, Y13
Figures 3-67 through 3-71 present the angular variation in the

coupling coefficient for singularity positions "A", "D", and "G" in
Figure 3-10. Table 3-3 predicts possible angles of maximum coupling

for these figures using the "standing wave analogy". From Figures 3-67
and 3-68 maximum coupling for perfect grcund (0=120.0) occurs at 45
degrees and as always, a relative extrems in the magnitude of the
coupling coefficient occurs at 90 degrees. Of course, the extrema at
90° is predicted by Table 3-3, the maximum at 45°, however, is not since

BhSINe < /2 when h/% < 0.2. It is also interesting to note that unlike

the corresponding figures for Y12 and 3 in Figures 3-67 and 3-68 the
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coupling coefficient for 0=0.12 (real and imaginary part) corresponds
more closely to the “free space" coefficient than to the "perfect
ground" counling coefficient. This result can be explained by noting
that for higher order poles the ground conductivity must be larger

to produce a perfectly conducting earth than for lower order poles.
Next, consider Figure 3-69, for the high conductivity case maximum
coupling occurs at 8=40 degrees; using the "standing wave analogy"
one would expect peak coupling to occur at approximately 50 degrees.
The mechanism for this error is not known. For Figures 3-70 and

3-71 Table 3-3 again predicts relatively accurately the angle of
maximum coupling.

Figures 3-72 through 3-75 show variation in the real and imaginary
part of the coupling coefficient for the third self-resonant singularity
with the scatterer height-to-length ratio as a parameter. In Figures
3-72 and 3-73 the conductivity is 120.0 and the relative permittivity
is one. Ir Figures 3-74 and 3-75, the conductivity is 0.12 and the
relative permittivity is one.

Figures 3-76 to 3-90 show variation in the coupling coefficient
for 1 with the relative permittivity as a parameter. In each of these
figures, the conductivity and scatterer height-to-length ratio are
held constent. Explanation of the behavior of the coupling coefficierts
in these figures is similar to that given for Figures 3-34 through 3-42.

For the wire scatterer in free spaca, the coupling coefficient fcr
the third singularity at an incident angle of 70 degrees was shown by

Tesche [1] to be zero. Note from Figures 3-67 through 3-90 that a nul
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in the coupling coefficient occurs at 70° independant of the ground

parameter and scatterer height-to-length ratio.
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Figure 3-3. Trajectory of singularity 1 for the case

of a thin wire over a parfectly conducting
ground.
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Figure 3-4. Trajectory of fundamen:al self-resonant
singularity, Y17s @S @ function of spacing,
h/Z, and conductivity, o. The relative
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singularity, Yy7» @S function of spacing,
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Figure 3-12. Trajectory of fourth self-resonant singularity,
Y140 @S @ function of spacing, h/£, and

conductivity, o. The relative permittivity is
held at one.
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Figure 3-13.

Trajectory of fourth self-resonant sincularity,
Y140 @S 2 function of spacing, h/£, and
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Trajectory of fifth self-resonant singularity,
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IV. Conclusions

The Singularity Expansion Method (SEM) coupled with the reflection
coefficient approximation seems to be an appropriate technique for ana-
lyzing a cylindrical scatterer over a finitely conducting ground. Pole
lecations of the cylinder over perfect ground calculated by investigators
were found to be identical to those calculated in this analysis when the
ground conductivity is large. Also, when the ground conductivity is
reduced with the relative permittivity held at unity, calculated pole
lTocations agree with those of the free space problem. These facts add
credence to the reflection coefficient technique. In general, it is
found that displacement of the singularities from their free space posi-
tion is a function of discontinuity in the ground plane. The mechanism
for discontinuity is seen to be somewhat inmaterial. Mode vectors
corresponding to first layer singularities show Tittle or no dependence
on the parameters of the problem.

The greatest value of this work lies in the fact that a relatively
complicated problem has been solved within acceptable engineering accu-

racy over a wide range of parameters.
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o
o
_'. ? S
COND.=120.0,0 ~REAL,A -IMAG.
COND.=0.12,4 -REAL,x -IMAG.
—a COKD.=0.00012,¢ -REAL,4 -1MAG.
:ZLDJ
u_' .
—_O
(&
—
L
L
o
(CRPo /
O e ¢
L)C) \ —
g
" B
| )
=
— O
_JU) s
. ——— e
0o z
o 1 — ’*"’/”/K
(39)
(&)
o
o
- l ] g T T
|
0.00 15.00 30.00 u5.00 650.00 75.00 €0.00

ANGLE OF INCIDENCE

Coupling coefficient for fundamental self-resonant singularity,
Y17s @S @ function of conductivity, -, and incident angle &.
The scatterer height-to-lencth ratio, h/%2, is 0.50, and the
relative permittivity, £Rs is unity




71

o »
o
.-: L _—t\;‘_\:)
COND.=120.0,m -BERL,a -IMAG. ~3
COND.=0.12,4 -REAL,x -IHAG.
) COND.=0.00012,0 -REAL,4. -I1M50,
Zn
THES
— O /
(&)
—
(U8
(T
uwo
[
(__)C)
(&a]
=
0O
_JU)
0o
i
&)
()
o
o
- ’
1 ! T T T T
0.00 15.00 3060 us. 00 60.00 75.00 90.00
ANGLE OF INCIDENCE
Figure 3-28. Coupling coefficient for fundamental self-resonant singularity,
Y112 as a function of conductivity, ¢, and incident argle 4.
The scatterer height-to-length ratio, h/z, is 0.75, and the
relative permittivity, €ps is unity
r
H
‘ k
\
4

Bl S8 et




72

- 3

o

CEND.=120.0,0 -REAL ., A ~x%¢€f,’/r
COND.=0.12,4 -ﬁERL.yVZ?;iJ.

— COND. =0.00012,0 4REAL S
z@
(TH
e
(@)
—t
(U
L
=
O -4
(_)O
(@]
=
— O
_JLD
oo
e
O
(89

o

o

T 5 ) 3 1 7] T

0.00 15.00 30.00 5. 00 50.00 75.00 gC.0do

ANGLE OF INCIDENCE

Figure 3-29.

Coupling coefficient for fundamental

self-resonant singularity,
Y1710 @S @ function of conductivity, c, and incident angle 5.

The scatterer height-to-length ratio.

: Al J : h/z, is 1.00, and the
relative permittivity, =5y 15 unity

e

TR b




73

1.00

COND.=120.0,0 -RERL,a ~IHAG.
COND.=0.12,4 -REAL,Xx -IMAG.

COND.=0.00012,% -REAL,.4 -IMAG.

0.50

!

COEFFICIENT

0.00

.00 15.C0 30.00 . u5.00 60.00 75.00 90. 00
ANGLE OF INCILENCE

Fiqure 3-30. Coupling coefficient for fundamental self-resonant singularity,
1> as a function of conductivity, v, and incident angle §

the scatterer height-to-length ra
relative permittivity, ERs is unity




74
o
(] ®
r—: :_7— =3
COND.=120.0,p -REAL,s -IMAG.
COND.=0.12,+ -REAL,X -IMAG.
o COND.=0.00012,6 -REAL,4 -IMAG.
Zwn !
Ll
e
)
—
L
(S
we
O -4
Qo
b
—
—0
=
o
=i
D 1]
~
~ f
i i
- ’ - - e
{ T T 1= T =) s ]
0.00 15. 00 30.00 ys. Qoo 60. 00 75.800 83.00
ANGLE OF INCIDENCE
Figure 3-31. Coupling coefficient for fundamenta\ ity,
EE as a function of conductivity,
The scatterer height-to-lenagth ratio.
relativs permittivity, R is unity
|

LR T o

oy P— g

P L S Sesevr




. N W

' 75

Table 3-1. Predicted angle of incidence for maximum coupling using the
"standing wave analogy." The table applies to Figure 3-26
through 3-31 for large couductivity, (o = 120.0), and unity
permittivity, (sR = 1.0)

- —

=

tan[gh sin3]

—L :&'_h_ N =
FIGURE h/s Lbpyah = = Bh = = cose=0 + gh sine = 0
3-26 @.25 2.850 0.713 90° NO SOLUTION
3-27 0.50 2,775 1.388 90° NO SOLUTION
/
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Figure 3-32. Real part of coupling coefficient for fundamental seli-resonant
singularity, s 35 2 function of scatterer height-to-length

ratio, 2/%, and incident angle 6. The ground conductivity, 7,
is 120.0, and the relative permittiv-ty, Re is unity
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Figure 3-33. Imaginary part of coupling coefficient for fundamental self-
resonant singularity, Y1y AS @ function of scatterer height-to-
length ratio, h/z, and incident angle 5. The ground conductivity,
o, is 120.0, and the relative permitiivity, R is unity
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Figure 3-35., Coupling coefficient for fundamental self-resonant sinzularity,
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Figure 3-37. Coupling coefficient for fundamental self-resonant sincularity,
Y110 @5 @ function of the ground plane relative permittivity, €
and incident angle 6. The scatterer height-to-length ratio, h/%,
is 0.75, and the conductivity, o, is 120.0
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Figure 3-43. Coupling coefficient for second self-resonant singularity, ~

12°
as a function of conductivity, o, and incident angle 2. The
scatterer height-to-length ratio, h/z, is 0.20, and the relative
permittivity, R is unity
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3-44. Couplirg coefficient for second self-resonant singularity
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scatterer height-to-length ratio, h/2, is 0.40, and the relative
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Fig 3-45. Coupling coefficient for se self-resonant singularity, vq,
as a function of conductivity, o, and incident angle 6. The
scatterer height-to-iength ratio, h/:, is 0.60, and the relative
permittivity, R» is unity
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FIGURE
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3-44

3-45

3-46
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Predicted angle of incidence for maximum coupling using the
"standing wave analogy." The table applies to Figure 3-43
through 3-47 for large conductivity, (o = 120.0), and unity
permittivity, (eR = 1.0)

hit e oh = 231 sl Ea2£521§;n;]o
0.2 5.800 1.38 90° NO SOLUTION

0.4 5.825 2.70 90° 48.5°<2<42.0°
0.6 6.025 3.90 90° 31.0°<8<31 5°
0.8 5.900 5.34 90° =y R g
1.0 5.900 6.66 90° L

47.5%°<2<48.0°
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the relative permittivity, R is unity
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Figure 3-49.

Imaginary part of coupling coefficiern: for second self-resonant
singularity, T10» a5 2 function of scitterer height-to-length ratis,

h/%2, and incident angle 6. The grour! conductivity, ¢, is 120.0,
and the relative permittivity, Eps it unity
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Couplirg coefficient for second self--esonant singularity, Y1
as a function of the ground plane relative permittivity, €Rs and
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0.20, and the conductivity, o, is 0.2
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Couplirg coefficient for second self-resonant singularity, v
as a function of the ground plane relative permittivity, = , and

incident angle ¢. The scatterer height-to-length ratio, h/%, is
0.60, and the conductivity, <, is 120.0
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as a function of the ground plane relative permittivity, =g and
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0.60, and the conductivity, «, is 0.12




.00

1
—

FFICIENT
0.50

00

G,

1

COUPLING COf
-0.50

1.00

€=1.0,REAL-7 , THAG. -2

€g=15.0,REAL-4 , IMAG.-X

R 7‘**;(— e et
T

i’

0.00

Figure 3-60.

{5.00 . 30,08  US.g0 - -Bo.0B - 75.00 90
ANGLE OF INCIDENCE

Couplinc coefficient for second self-resonant singularity, Y2
as a function of the ground plane relative permittivity, eps and

incident angle 6. The scatterer height-to-length ratio, h/z2, is
0.60, end the conductivity, o, is 0.00012




]
]
‘ 106
o
O
® - i B e e— =y
— o / \s}
€a=1.0,RERL-my , IMRG. -A
€4=15.0, REAL -+ , INAG. - \
|._
(@]
Zin
Ll -
— O
(@)
—
(5
T
o =+ y e
Ll TS ../&\
O . i:_:,__.———!'\ \’P_/“ =
(= /
€
Z N\
e &,
S
0_(3‘_ ¥
j
&
(@)
' o
o
) e | 1 e I
l 0.00 15.C0 30.00 45.00 eﬂ 00 75.00 80.00
ANGLE OF, INCIDENCE
I Figure 3-61. Coupliny coefficient for second self-resonant singularity, 109
as a function of the ground plane re ative permittivity, €ns and
i
l incident angle 6. The scatterer heiyht-to-length ratic, h/%, is
0.80, and the conductivity, ¢, is 120.0
| :
' |




107

CAEFFICIENT
0.50 1.00

0.00

A

!

COUPLING
-0.50

1.00

0.00

Figure 3-62.

O
)
o)
L1
(=]
[ o)
w
Q

)

I o I I
15. 00 30.00 LS. 00 6
IN l

ANGLE QF

Coupling coefficient for second self-resonant singularity, Y12
as a function of the ground plane relative permittivity, €ps and
incident angle 6. The scatterer heignt-to-length ratio, h/¢, is
0.80, and the conductivity, o, is 0.12




108

o
o
' o
"‘_O
<10
LL_J =
P o
€.
—t
(115
L
LIS
[ R
(__)C)
€
7
—t O
T Ll
D-—-C)._J
= &
=)
(@)
(=)
o
1 T - I N = . = vy S
0.00 1500 i 00 u5.00  60.00 7 5. 80 S90.00
ANGLE OF INCIDENCE
Figure 3-63. Coupling coefficient for second seif-resonant singularity, 12
as a function of the ground plane relative permittivity, €Rs and
incident angle 9. The scatterer heijht-to-length ratio, h/c, is
0.80, and the conductivity, o, is 0.00012
%
{
!
l
TR AL 3 %




©
o
’ €3=1.0,REAL ( , IMAG. -a
' €r=15.0, REAL-+ , INAG. -X
*__.
o)
Zwn
e
€.
—
L
L e
LIJS /C*""‘\
ED g . =i H
uD&,« \
D
=
— 0O
W0
334
=4
&
€D
(v
o
T i X s - » ;
0.00 15,00 30.00 45,00 60.00 75 0l 90. GC
ANGLE OF. INCIDZ=NCE

Figure 3.64. Couplirg coefficient for second self-resonant singularity, re

R and
incident angle 6. The scatterer heijht-to-length ratio, h/z, is
1.0, ard the conductivity, o, is 120.0

as a function of the ground plane relative permittivity, e




g Ny

110

ey

N
8

E
0.

-0.50 .00

COUPLING COEFFICI

1.00

€3=1.0,REARL-D . IMRG. -A

€=15.0, RERL-4 , IMRG.-X

0.00

| Figure 3-65.

——

15.00 30.00 5. 00 0. 00 75.00 90. 1

ANGLE OF INCIDENCE

Coupliry coefficient for second self-resonant singularity,

o
.'129
as a function of the ground plane relative permittivity, eps and

incidert angle 8. The scatterer heizht-to-length ratio, h/z, is
1.0, and the conductivity, o, is 0.1¢

S o

ey




——.——-

1.00

111

!

0.50

e

COEFFICTIENT

0.00

!

COUPLING
-0.59

1.00

€a=1.0,REARL-m , [MARG.

€a=15.0,REARL -+ , IMAG

0.00

Figure 3-66.

1 T
30.00  45.00  60.00  75.00  90.00
ANGLE OF INCIDENCE

Coupling coefficient for second seif-resonant singularity, Y1

C
as a function of the ground plane relative permittivity, €ps and

(V&)

atterer heigh

S¢ t-to-length ratio, h/e, is
WIty, &, 15 G.08012

incident angle 6. The
1.0, and the conduct

e, v -

-y Py

T i o




112

1.00

COND.=120.0,0 -REAL.A e

- e e

CGNB.=0. 12,+—{'{_:;:>"\,/,2
ya

COND.=0.00 ;,?': »»"_',:

/f/

=
N

N

; 1 1 |
0.00 15.00 JO.JO us. 00 6C.00 15.00 S0.00
I T

ANGLE OF

ICIENT
0.50

|

COUPLING COEFT

8.

-0, 50

~1.00

Figure 3-67. Coupling coefficient for third self-resonant singularity, v,., as
) = I3
a function of conductivity, @ and incident angle 5. The scattere~
height-to-length ratio, h/¢, is 0.10. and the relative permittivity,

eg» 15 unity

R o

vy 4 - P

,
R e
s

s ———— i £ 5 B E: o ’ X |




o
o
o i e R T S o st =y et
COND.=120.0,7 -REAL,A -'W?’fj: N
A / /,’ \\\\\ 5 \\‘
COND.=0.12,4 -REAL ,x A144G. - >
/,;/ A\
e COND.=0.00012,0 -BERK, o ~IMAG. \\ "
=3 2\ 7
L CD._‘ *///x\-s ~ //
— 35 » \ \ A\ /
/ \ : /
o C;” / VRN =
— % AN
L 3 / // \\ RN /4/;
. /j// s ‘\\ \ /;/// P’
iy | ™ g W
€ [ N\ - / RN ‘
\\ Vi v \\\\ 3 |
- N > r N\ ,
€2 N \ y \\ —a
= N 7" //
—O i / \( 7
._j L //}\ i /
0o R #
=1
&3 .
D
o
o
'_‘- .
I T T

Figure

0.00 15.00 30.00 l

5.00 60.00 75. 00 90. 30
ANGLE 0OF INCIDENCE

3-68. Coupling coefficient for third self--esonant singularity

Vs Foms G5
ol
a funct on of conductivity, o, and iacident angle 8. The scatterer
he1ght~'otlength ratio, h/2, is 0.20, and the relative permittiviw.y,
ER> 1S unity
T ———




o

JuU
r
& P
A ——

|
|
-t
o
— ot 4
o S
£ t
i b r
) = &
Y- - O b
- e |
=k e T
o J = S
ik D @ %
(8 D m m g |
0=z - O |
G o }
GIC LUSRR ni.. |
\ N QD O D > |
n, \ (@) = 49 i
e\ ONCN\ O £ = ]
r I X N P & e !
) § Lot 4 i A 5 o ™o — . = {
© = K o= £ 43 )
(4] C "\ . g Q42 n .
v 3 ‘ //, wn P e LS =
s s e K [ ol A =Ty
u [ ,/ | N M
3 ‘ o Q o
© o 8 i} O T LC W
2 > * ] < &
3 (=] © \ { \\
Q (&) (&) ’ /4 .
[ 1 [ o
\ — (Xe)
O 1
) ™
e . T e

SN 0S°0- 00" 1-

0601
INJIJI144403 INI'1dNB3

Figure




w 7 TR e W Ta TRy

———— — - = | R .. 7

. . i i v

© e E
o s
. (7 I
- s} D >
- ]
[6)) ’ s
™M © 42
~— () -
= v B
b
S
Sy A L
e 2
=
B s o W
. [ =
LD < o
e y 4
S - [so}
o Q r—
C -
o R
v =
| a; QU
o) oo e
[ ) = e 4=
| i s L | m Ww ke
- e
I e | e
e R
Lo v U
5y 4 % Al ik
s )
| Y- <+
- g G e
== Q) el e |
=) n ©
o | o n
o ) -
R £ B
e | - PN
= e oy "~ oo
40 >N
T PN e
et R
o) D B w
Y- we D
4
o L 4+ O
=
ﬂw i T T =
B I
LoD O O£
05 S L 0 42
o] Y- o
R Y= 4= =
[ DR o~ <V -
o e 4
(O I e
o0 s
L= T *r= dad
' o = sy
*v - - O wn .
et o A e
L & S
— S Y4e— -
o L o<
O WL W
o
~~
o 1
O o
o o
e | el po. -
00°1 00°0 05 00°1 e f
| i) T o
szanEmEc INI1d Duu -
L




—
—
(&)

1.00

l'

FFICIENT
0.50

0. 00

Cal

!

COUPLING
*0.50

(e
o
s, D) )
| | [l A s
0.00 15,008 U E80 3
ooty
ANGLE

-

Figure 3-71. Couplinc coefficient for third

a function of conductivity
height-to-length ratio, h/¢

i

eWiSme

”q*,‘.,,.f —

o Sy

"y




e D -

-

=
B
Table 3-3. Predict ang incidence for maxin oo g US the
"standing w analo The table app t s 3-67
through 3-71 ~ 1a uctivity, (o = 120.0), it
permittivity, (ep = 1.0
cCICIIDC T 3 = " '.‘\ A= : ’: : n
F1GURE h/ i 11 o S COSE= : &
L L v S
3=67 0.1 0.873 90° NO SOLUTIC

3-68 0.2 8.675 1.730 90° NO SOLUTIC!

(O8]
]
o
(Vo)
O
.
«
(@8]
~I
e |
(&4}
m~a
(@)}
(3%}
)
Yo}
L s
)
wn
C
Al

3-70 0.4 8.875 3.55) 90°

3-71 0.

o
le]

e —— e e . e i . g . -

.875

(&3]
S
3
I
=]
(Vo)
o
na
~J
I
[

(Oh]




. 4.‘2.1«.!‘0

¥ -
.
|
! ]
i .
y up
- R
’ , 4 e b e e e e o g 4]
. 4 \ = p ] C N
| / | th ¢
N\ N ,./ / u < A% .
- < \ / | e e
3 : \. \ #f v ==y
| o : : _
| - « 4 i 1 \ ‘_ A i -
1 1 4 | we ’ 2
| N, /\ e 3
| / " / / - \
\ \ ) oo~
‘ » L ) o~
|
~ . .\ 1 wn
! L . . ,
_ \ ’ o - r 4 !
\ / .
|
1

” N |
\\ o \ W | O il - m
i AT L e | L s i Sy i
= L 5 ) r « 42
4 4 Q \ (S ) rpm |
- ” / _ (&5 ) - 3
| % ) v 5
\ | p
\\ ,ﬁ ~ Ot ®)
/ | e e =
- -
/ - ) %
5 ) % 5
e as b =
7 | W Q3
[ s - ]
.. D) == ( W
{ I i o or
s -8 i |
| ~ o
] ) ( ) y W
! ¢ A
o -
| y 1 t X
. i = ¢ } ')
b5 . - -
L ) ( '
1 M2 )
i i d
\ S
| o @
{
s o
foy -
s - QO !
TR {
ks i Al .
L o
- A < ]
N L~
|- - D
| — - S |
|
|
| o
- i
| & ./
| , C ™
e B ——
L e |

00°1 05°0 00°0 05°0- 001~

INFIDI44303 9NI14N0D




B O
|
\
|
|
i
|
|
|
|
|
(o] !
— |
AR
|
[
| i
| ( >
i
| .
| (=] [
e S
i 3 <
| = -
| . -
|
| ) + O
a8 o
- 22}
o o o
s
' wl =] sccf
| R
1} ey b o " ol
|
|
|
|

M s <

3
p
| |
b

.1‘
"
4=
W
) >y
oo+
R =
R
)
O
b -
O &
G
Q

(¢¥}
Q >
p=
(S -
L2 o
—Q

.

ind

é
the

h/%,
and




!
_ e \
i // \
‘ . ™.
_ f
|
/1

\.,\\,\
{ s
" Wl
ﬂ Wl
“ 2
| P o
,, e
| 7 At

7 4 L
| V4 L
o | \\\
o 1 £ \
’ / \\

>

0S ' 0-
NI TdNB3

e e e S




- e
'
) Il
) _—
oJ (@) =
% ‘ “
) o e
i | acaaia o (18] -
| s “ N ’
| ' = {
| ~ oL o
| // ” n H
{ e Wy w
m / I e 4 S0 AP 2
| ; v pagid o
,. | A VA 1
D S d
] e ’ ] "
| | - ity |
~ { o |
\ - o s
, Q- “
! 4 i
| | ] bt |
| . | + 5 |
{ \ | € ) o w
“ o & c® o w
| /. | == g
/ / o
| F 4 / ) - — |
H N\ ] = i
\ &
| (S < m
! S < H r
| : .
\ / <o a 5 |
i I TS Y~ !
e e = o |
= D 4D W
W T SR _
! = 3 e
- e 42 !
“ — Q “
£ M == >

coun

a

angi
1E

|
| & ¢ L \ |
R o g LT |
| o . D
| 2 > oL |
\ - , ]
| e | s o QO i
| ' y { e >
ad ] — { \w |>y
s T e L P
. = T X © |
., ) ! © M . © o ps
! mh o -] N o ..l.u ; E
| — ™ w / __I.IL [f mﬁ w5
& o b / { © c o
[ i / i P 5 o=
b < mdl el . IR K
| S ~ Fy |
[ = = = g, {
W 7 _ o
| i (o} I~
| | O ]
| o™
ST R 'vﬂ-, e e P T e T ey ey g
o &M ~ ¢ oy & ”
001 0570 g Gl G0t w
N D Bk el '3 )N s B g N =
INII3I34383 UNI 14N0BI =
g
L




42
v
A | e )
) o)
. V.
= (18] L) 1
| Oy -
| £ o
o)
o -
.
- py AL ]
© 4+ o
%) - i
. , .
| 1
Lo Pl R e |
I i A !
O I |
| vy - N e !
oy, oy
v 5 -
1 )
| - G s g
s = f -
o s = ©
P = o %
S 4
~ 3 -—
| @ = a Q) 4
| = £ =ty
| Ll ' A
A b e
{ i i 5.0 A ot >
| b=y Q) r= 1
w 3] (
00 «
= et '
o Sl O o] B i
o~ L L) — AR {
et A ' R e B {
\ = T e |
| /. (1 PR Y |
I N - re—
™ ! & O |
o £ =W
| Y 3 QD =
| 3y (&} ~
| // | i TS T
5 | i J = o)
| ) =
| N R ) +
| G T O o p W e
. (6 3 (@] s O >
| P - 4D W 4D
| A G -
[ Yo Ge ) S
Q O ko

&
L

(&) (&)
| €S o =
| (= IR o s 0D
! _ © = 49 D ©

ik i) o
| o) - s WO
= = | —

3 4« O

(@] e L

¥ b 65 ) (3o 0 o+
1 Ha
| & & /
M \ O
| / s

'0.00




o1.00

L s | S B e DR ) S e e e e SR s 1
.00 15.80 30.00 45.00 60.00 fo.UY s WA
g st St KT ITREMNTE
QI\\ULE I?_ li\\ulb_l\pri
Figure 3-77. Coupling coefficient for third self-resonant singularity, v.,, as
gularity, v,,
Y , - L
a function of the ground plane relat-ve permttivity, e,, and incident
angle a,. T.F_‘se.s:atte"‘gr height-to-length ratio, h/2, is 0 10, and
the _onductivity, o, is 0.12

e —




v .~

124

\ ) /’
.
€a=19.0,RERL-4 , I "

.o VISR

e, R —

o £ 3 p
=k "l‘\\ \\ L /,-/ // i

i g i SR N R | R A E N B e T il ) Seleis e T i
'0. 00 15.00 30.00 4S. 00 60. 00 75.00 90. 20
ANGLE OF INCIDENCE

Figure 3-78. Coupling coefficient for third self-rescnant singularity, v.
= J

as a function of the ground plane relative permittivity, «
incident angle 3. The scatterer hei

0.10, and the conductivity, ¢, is 0.

N

'

'
' !
: v
i :
: -
! .
] ‘
:

. S k
& |
i ;

‘

- — e - ’
— S .




G —

€a=1.0,REAL-O , IMAG.-A /

€;=15.0,REAL -4 . IMAG. -,._/‘

‘ "".’_ oY a ~ 0 = A ~ ~ ; - o ~ ¢ ’
.00 15.00 30.00 us. oo 60.00 75.00 90. 0C
Rl E E TRIEC'T BRENICE
ANGLE OF INCIDENCE

Figure 3-79. Coupling coefficient for third self-resorant singulari

as a furction of the ground plane relative permittivity,

incident angle 5. The s
0.20, ard the conductivi

atterer heicht-to-length ratio
a

» 18 120.0

PU————

o e

b
‘
!




o n—

- .

B e G . - s e e e e - —— 1

Figure 3-80. Couplinj coeffic.ent for third self-resor ciy WPV, 4
esc L singularity, v.,,
; ks
' £ +ha ISTeT nTan ~ = P + : 3 '
as a function of the ground plane reiative tERIvity, €54 and

inciden. angle g. The scatterer heioh

: : _ Y height-to-length ratio, h/z, is
0.20, and the conductivity, o, is 0. 2 :

ay vy

o
e &
B e

v o
A o an B0a




1.00

G0

0.

NG Cl

IN

J

,.
-

QUP!
-0.5

C
s

e
.
r—

B PR
s (s T I ST e TN I | SRR ) »
15.00 30.00 §5. 00 60. 00 5. 40 gC.00
| = = A TR U i B
ANGLE OF INCILENCE

Couplin: coefficient for third self-resonant singularity, vq.,

as a function of the ground plane re ative permittivity, €
incide

iden 9 . icht-to-length ratio, h/2, is
0.20, and the condu

o

e 3
3 WONT 2

0.¢C0T2

A

" r
.l

o

b= H

i +3

} tf

i

A iy

oy




1.00

8av1.e,P;:L-w-,XVA:.-;:f’//’— \\\\\\\\w
/ .\.q

€5=15.0,RERL =+ , 1";:'.'.

T Py

| =i

| e u
: I st B
e D

—i

y e

w0
£ o
e il
=
s

7
0.00 15.00

Figure 3-82. Couplin:

——

incident angle €. The scatterer

e

- D e e—— e
.
-
.-

- - P

é
i
F




1.00

3 R ey s P ::?;;w~w\; ) SR TE i
"4
€a=1.0,REAL- ,xﬁ;;}'ii/,f \\\:F\\\ ‘

0;50
P

FICIENT

,.‘
s
i

0.00

COE

COUPLING
-0.50

1.00

| W T I = e e =0 = |
0.00 oM ) 30,00 % 4 .gD _‘BQ.D; S 08 80.00 |
ANGLE OF INCIDENCE 4

Figure 3-83. Coupling coefficient for third self-resonant singularity,

EYs ¥xas
19
; as a function of the ground plane relative permittivity, e,, and
| incident angle 5. The scatterer height-to-length ratio, h/i, is
0.30, and the conductivity, o, is 0.12

i
P

| 3
.1
B

13
! ' |
| i "
| « i )
i b 1
1 o]
s

:

| %
: 4y

s !

'

. &




(=
(32

-

—— — - mm—— —

6 2

i}

|

Elty

1 G

:|‘.7 2

S

w

$

onan

self-res

d

hir

4
L

nt for

&

1y coeffici

Coupling

<t

(=9

Figure 3-

L ap— §

0 (%]
s o
[te}
-
o o2
Qs S,
I} R =
” ~
oy o
42 -
e fad
- 153
o s
-+
42 =
sl oS
chH
p =
@ (e8]
o R
i
@ (@)
> 42
e i
+ 4
(101 ¥ o2
— o
QO -
S Q)
" =
@
= S
1o} a
—
Q. ()
R
) +
& Pae)
= Q
(@] w
.
o
e
D -
R o
42
Y
(&}
eV}
£ -
() o
"pon =
o 1ot
(&)
< -
== =
G Q
©
S =
O
(%] =
-
P

vity,

e
[

.he conduc

0, ard t




S b \ e e
| §a:da
| / .
| N
| 5
| i
| i
| 2] Frig
| q
B
& u,__w
v | W
o | |
: o
/" !
|/ {
| /
n,/ 4 b4
©) LS u,
R |
G A}
| & & S
A\
| \

r ; il
0S°0 oo

Go- 5°Q .. og0rg - ge
INIIJI44533 INI

-t

YY)

dlil

J

s U

wn

©

, o

< he

'o

ga " -

ird

n

£

for

T

nctios

T
LY |

a

as

3

e
aLiv

1th ra

7-lenag

ar heig
&390

++an

SCa

Th




{

(
.
) "
(93] —
-~ q\.
> 3d
v y
¢ i
\ d )
I )
%) '
(&R N ]
42 < 4
) ' &
42 O
(4]
- y V)
| N = o
. ) 2 @
) " O " -
[ - 1 — t
- 71 O .
a)
J v ) >
— e
(30 ]
S ) < "
) vt ROl ; -
= « {
. 7 S T
L o = O
o ¢ >
A < 5 wa
I ‘
o <
O = & -
BelL e w 42 Q
C . — O
P (O o=
o & (@) =
Yy > = \
L L6 ¢ o= SR
AUl b Q {am

G
0. 4¢

u
'.IC]‘:
S

and
h/e,




Zw

€p=1.0, BERL—m , IMAC /./'-

R=1l.U,henl~T . -/-,»x/
(133

€3=15.0,RERL~ , JMAG. A%

S s

O i e S Bl e N .
'0. 00 15.00 30. 00 4S5.00  60.00 75.00 90 00
ANGLE OF IC ICI

Figure 3-87. Coupling coefficient for third se.f-resonani singulavity
as a “unction of the ground plane -elative permittivity

and incident angle e. The scattersr heicght-to-length

hEnE: SN

)

B — —

o

h/%, is 0.40, and the conductiv v,

oW

o ——p

-y

e T




o

for

coefficien

1
o

Coupl i1

lee]
(e9)

Figure 3-

5
zu., :

S |

b}

. —— s — L]
ridsdia

P el




L

(s
=
— O )
-,.JU) -3
G esr 4
; 2
)
(5
i W CEE T  RRERE i T el ¥ | i/ . o
'0. 00 15. 00 30.00 Us, 00 60. 00 75.00 90. 00
ANGLE OF INCID:INCI

Figure 3-89. Coupling coefficient for .third seif-resonant sinoularit

lic LYs 192"

-~ . o 2 ‘J
as a ‘unction of thne ground plane relative permittivity, eq,
= n

| h/s, is 0.50, and the conductivity. o, is 0.12

T A Bt 40

SRR P O e TR




136

-
o
I
—
5
I
-

\ Lz
]

Nl 3 T AT - affirsnont Far +hawwA - ~ - 2N PR
F19“re 3-90. Cuup] ng coerticient tor third se f-resonant nihjdlu::\y, g]ﬂ’
ot S v 1 -y e e v 4 N + < E
as a “unction of the ground elative per tivity €ps
3

h/2, is 0.50, and the conductivity. o, is 0.00012

|
o | Ay




b T —

IV. Conclusiors

The Singularity ed with the reflectio
coefficient approximation seems to be an appropriate technicue for ana-
lyzing a cyiindrical scatterer over a firitely conducting ground. Pole
locations o7 the cylinder over perfect ground calculated by investigators
were found -o be identical to those calculated in this analysis when the
ground conductivity is large. Also, wher the ground conductivity is
reduced with the relative permittivity held at unity, calculated pole
locatic s agree with those of the free space proble These facts add
credence to the reflection coefficient tecl s ¥ s
found that displace t of the singularities from their free space posi-
tion is a function of discontinuity in the ground plane. The mechanisi
for discontinuity is seen to be somewhat immaterial. Mode vectors

resonances
thin wire-1:
nearly perf
the numeric
of incidenc

the "standi

ing to first layer singularities show little or no dependence

1ig coefficients corresponding Lo the first three fundamenta

have been presented as a function of the parameters of the

)ssy ground problem. For the case when the ground plane is
ctly conducting the "standinc wave analogy" as discussed in

1 results section predicts, relatively accurately, the ang e

: which results in maximum coupling to the scatterer. Although

ig wave analogy" is obviousiy not completely rigorous, the
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point of view taken here is that the 1 insight ided this

‘ technigue and its apparent y in pradicting maxi coupling are
sufficient to compensate for the lack of 3 ¥ ri

The greatest value of this work in the fact that a v e

complicated problem has be acceptable engineering accu
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